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The natural frequencies and damping ratios for surface waves in a circular cylinder are 
calculated on the assumptions of a fixed contact line, Stokes boundary layers, and 
either a clean or a fully contaminated surface. These theoretical predictions are 
compared with the measurements for the first six modes in a brimfull, sharp-edged 
cylinder of radius 2.77 cm and depth 3.80 cm. The differences between the predicted 
and observed frequencies were less than 0.5 % for all but the fundamental axisymmetric 
mode with a clean surface. The difference between the predicted and observed damping 
ratio for the dominant mode with a clean surface was 20%; this difference was 
significantly larger for the higher modes with a clean surface and for all of the modes 
with a contaminated surface. 

1. Introduction 
The damping of surface waves in a closed basin, which almost always exceeds 

theoretical predictions, is due to: (i) viscous dissipation at the rigid boundary of the 
basin, (ii) viscous dissipation at the (upper) surface, which may be covered by a 
viscoelastic film, (iii) viscous damping in the interior fluid, and (iv) capillary hysteresis 
at the contact line. The interior damping (iii) is negligible for water in a basin of lateral 
dimensions comparable with the wavelength, and we do not consider it further. We 
also assume that the motion is of sufficiently small wavelength to render damping in 
the aerodynamic boundary layer negligible (cf. Dore 1978) and of sufficiently small 
amplitude to ensure laminar flow. 

The calculation of laminar damping at a rigid boundary goes back to Stokes (185 l), 
who calculated the flow over an oscillating plane and remarked that the corresponding 
flow over a curved boundary ‘may be calculated to a very close degree of approximation 
by regarding each element of the [boundary] as an element of an infinite plane 
oscillating with the same velocity’. It is implicit in this approximation that the 
minimum radius of curvature of the boundary must be large compared with the viscous 
length 

( u  = kinematic viscosity, w = angular frequency), which is 0.6 mm for a one-second 
wave on clean water. 

The observation that surfactants, such as oil on water, can lead to appreciable 
damping of surface waves goes back to antiquity (see Scott 1977 for a historical 
survey). The physiochemical problem (see Miles 1967 for a brief review) depends on a 
large family of parameters, at least some of which have not been measured in the 

I,, = (2v/w)”2 (1.1) 
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spectral domain of gravity-capillary waves. However, both the dissipative and 
dispersive effects of a surface film on a wave of small amplitude are captured by the 
phenomenological boundary condition (Miles 199 1 b) 

(1.2) 

where u is the horizontal velocity at the interface ( z  = 0) between the film and the 
underlying liquid, u, is the vertical gradient of u, V w  is the horizontal gradient of the 
vertical velocity, and 1, is a complex parameter with the dimensions of length. The 
limiting cases of a free surface and an inextensible film correspond, respectively, to the 
limits ls/l,, f co and l,/lv J 0. We consider only these two cases in the interpretation of 
our experiments and refer to the corresponding surfaces as ‘clean’ or ‘fully 
contaminated’. We remark that, in the general case (see the Appendix), I ,  must be 
expected to depend on the frequency for harmonic motion (for which u and w may be 
regarded as complex amplitudes). 

Capillary hysteresis is confined to a boundary layer that moves with the contact line 
C and has a lateral thickness of the order of the capillary length 

u + ls(uz + VW) = 0, 

(T = kinematic surface tension, g = gravity), which is 2.7 mm for clean water. It often 
(especially for a hydrophobic container) dominates, and is less well understood than, 
wall and surface damping at laboratory scales. The hypothesis that the motion of C is 
resisted by a force proportional to its velocity, which is suggested (Miles 1967) by 
Ablett’s (1 923) measurements for small velocities, leads to the phenomenological 
condition (Hocking 1987; Miles 1991 a) 

c n . V < =  a,<, (1.4) 

where n is the inwardly directed normal to the lateral boundary, < is the surface 
displacement, and c is a parameter with the dimensions of velocity. But V c  need not 
be in phase with a t<  in the frequency domain of interest, and c is expected to be 
complex for a monochromatic wave of complex amplitude c, for which a, 6 = iw<. (The 
available measurements, such as those of Ablett (1923), are for either very low 
frequencies or uniform translation, for which c is real.) The limiting cases of free and 
fixed contact lines, for which (1.4) reduces to n .  V c  = 0 and 6 = 0, respectively, 
correspond to the limits y + 00 and y+ 0, where 

y = c/wl,. (1.5) 

The former condition, which is implicit in most of the literature of water-wave motion, 
is realized for long gravity waves but not at centimetre scales. The latter condition is 
realized in a brimfull, sharp-edged container, as in the seminal experiments of 
Benjamin & Scott (1979). 

Of the various sources of damping enumerated in the opening paragraph, only 
Stokes-boundary-layer and interior damping are amenable to calculation from first 
principles. Experimental confirmation of such calculations has been hampered by 
uncertainties associated with the remaining sources, especially the contact line and 
surface film ; conversely, accurate determinations of contact-line and surface-film 
damping requires the accurate determination of Stokes-boundary-layer damping. We 
therefore undertook a theoretical and experimental study of waves in a deep, brimfull, 
circular cylinder of radius a and depth d for which 

l,, < 1, 4 a, (1 4 
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and either 1, % 1, (clean surface) or 1, G 1, (fully contaminated surface). The restrictions 
1Ja < 1 and l,/a < 1 ensure that dissipation is confined to boundary layers. The 
choice of a circular cylinder eliminates possible difficulties with corners in the lateral 
boundary. The restriction to deep water reduces the number of parameters and 
eliminates possible difficulties with the flow at the intersection of the lateral and bottom 
boundaries (although this is a stagnation-point flow and therefore unlikely to be 
important for any configuration for which d % I,). The brimful1 condition presumably 
eliminates capillary hysteresis. The attainment of a clean surface eliminates surface- 
film damping (or, more precisely, renders it of higher order than Stokes-boundary- 
layer damping), while the attainment of a fully contaminated surface renders the 
surface-film boundary layer equivalent to a Stokes boundary layer. 

We proceed as follows. In $2, we formulate and solve the eigenvalue problem for 
inviscid gravity-capillary waves in a circular cylinder with a fixed contact line. This 
problem was originally solved by Graham-Eagle (1 983) ; however, the present solution 
is simpler and yields an eigenvalue equation that provides a more rapidly converging 
numerical solution vis-2-vis that of Graham-Eagle. In Q 3,  we calculate the dissipation 
in the Stokes boundary layers on the lateral wall, the bottom and beneath a 
hypothetical surface film and then simplify the results by invoking d /a  % 1. We 
describe the experimental apparatus and procedure in $4  and our results in $5.  The 
surface-film problem for arbitrary 1, is solved in the Appendix. 

2. The inviscid problem 

contact line in a circular cylinder of radius a and depth d is prescribed by 
The linear eigenvalue problem for inviscid gravity-capillary waves with a fixed 

V2$ = 0 (0 6 r < a, - d <  z < 0, (2.1) 

a, 4 = 0 ( r  = a),  aZ q5 = 0 ( z  = - d) ,  5 = 0 ( r  = a, z = 0), (2 .2~-c)  

a z $  = iwc, TV2c-g[ = iw$ ( Z  = 0), (2.3a, b) 

where $ and 5 are the complex velocity potential and free-surface displacement, both 
of which comprise the implicit factor exp(iwt), r ,  I9 and z are cylindrical polar 
coordinates, 0 < I9 < 27t, T is the kinematic surface tension, and the admissible values 
of the frequency w (the natural frequencies) are to be determined. 

We pose the solution of (2.1) and (2.2a, b) in the form 

where 

cosh k,(z + d )  $ = #,(I) R,(r) cos sI9 
cosh k, d ' 

(2 .5~-c)  

s is the azimuthal wavenumber, 4 is a Bessel function; and, here and subsequently, 
repeated indices are summed over the complete, orthogonal set {R,, k,} except where 
the index occurs once but is not repeated on one side of an equation. Note that R, and 
K ,  depend on s and that { 1, 0} is a non-trivial member of {R,, k,} if and only if s = 0. 
Substituting (2.4) into (2.3 a),  we obtain the corresponding representation 

[ = c,(t) R,(r)cossI9, 5, = (iw)-'$,k, T,, T, = tanhk,d. (2 .6~-c)  

10-2 
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(2.3b), which yields 

Separating the solution of (2.7) into a particular solution that describes the response 
of the free surface to the hydrodynamic pressure - p a, $ and a complementary solution 
that satisfies the homogeneous capillary equation and is determined by the contact-line 
constraint (2.2c), we obtain 

(2.8) 

D. M. Henderson and J. W. Miles 

We obtain an alternative representation of 5 through the substitution of (2.4) into 

TV25-gc = iw$,(t) R,(r)cossO. (2.7) 

< = A ,  R,(r) coss8 - AC(r) cos s8, 

where 

Z, is a modified Bessel function, I ,  is the capillary length, 

- iwg5n 
A , = -  A = C A,. 

g+ Tk?,' n 

(2.9 a, b) 

(2.10~7, b) 

Recasting (2.6b) and (2.10a) in the form 

$n = i(wkn Tn1-l w?, A,, 5% = (w,/w)2A,, (2.1 1 a, b) 

where O n  [ (g /a )  Kn Tn(1+ K?, 2 )I 112 (2.12) 

is the nth natural frequency in the absence of the contact-line constraint (2.2c), 
substituting (2.11 b) into (2.6a), and equating the result to (2.8), we obtain the 
compatibility condition 

(Wnlw)'An Rn(r) = An Rn(r)-AC(r)* (2.13) 

It then follows from the Fourier-Bessel expansion 

(2.14) 

and the orthogonality of the R,(r) that 

(2.16) 

Finally, we sum (2.16) over n and invoke (2.10b) to obtain (on the assumption that 
A .f: 0) the eigenvalue equation 

(2.17) 

for the determination of w. We remark that (since the K, are prescribed by (2.5b)) C, 
depends only on the capillary parameter h and that the depth enters the eigenvalue 
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problem only through the w,. The roots of (2.17) may be determined by Newton's 
method. They evidently tend to {w,} as h --f 0, in which limit C ,  = O(h) and 

(2.18) 

The corresponding distribution of the c,im, as determined by (2.1 1 a) and (2.16) in the 
limit h + 0, w + w,, is given by 

(2.19) 

The approximations (2.18) and (2.19) are equivalent to those obtained on the 
assumption that capillary effects are confined to an O(fJ boundary layer (Miles 1991 a). 

An equivalent form of (2.17), which follows from the identity En C ,  = 1 (r = a in 
(2.14)) and reduces to that of Graham-Eagle (1983) for d = co and s = 0, is 

C n ( A )  w2 - w; = 0, (2.20) 

but it converges more slowly than (2.17). 

3. Stokes boundary layers 
The flow in a Stokes boundary layer is governed by the diffusion equation 

iwu = vu,, (z 2 0), (3.1) 

where u is the tangential velocity, the time dependence exp (iot) is implicit, and z is the 
normal coordinate. The solution of (3. l), subject to the boundary conditions 

u = 0 (z = O), u - u, (z/I,t co), (3.2a, b) 

where u, is the velocity at the outer edge of the boundary layer, is 

u = u,{ 1 - exp [ - (iw/u)ll2 z ] }  (ill2 = (1 + i) /d2).  (3.3) 

(3.4) 

from which it follows that the boundary-layer-induced perturbations of the real and 
imaginary parts of the natural frequency are equal; accordingly, the perturbed 
frequency has the form 

where w,, is the inviscid frequency and 6 is the damping ratio. 

calculation (cf. Miles 1967) according to 

The resulting shear stress at the boundary is 

z = pu a, u = (1 + i) p ( + ~ w ) ~ I ~  u,, 

w = w,[l -(l-i)&], (3.5) 

If, as we assume, 6 is small it is expedient to determine it through an energy 

where, from (3.2) and (3.4), 

(3.6a, b) 

(3.7) 
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is the mean dissipation rate, a, is the complex conjugate of u, = V$, dB is an element 
of the rigid boundary, which comprises the bottom ( z  = - d )  and the lateral boundary 
(Y = a)  in the present application, 

is the mean energy (twice the mean kinetic energy for a free oscillation) in the inviscid 
approximation, and S is the upper surface. 

Substituting (2.4) into (3.7) (where u, = Vq5) and (3.8) and combining the results in 
(3.6a), we obtain 

(3.9) 

The first product in the numerator of (3.9) represents the bottom dissipation; the 
second and third products represent the sidewall dissipation. Letting T, = 1, we obtain 
the deep-water approximation 

(3.10) 

The further assumption that h < 1 and the corresponding approximations (2.18) and 
(2.19) yield 

(3.1 1) 
8 h K k  K,(K, K, + S2) 

(K ,  + K,) (K;  - s2) (K: - s2) 
A = (S)+ 

in which n is not summed and m = n is excluded from the summation over m. 
The remaining (other than rigid-boundary) damping is negligible if the surface is 

clean. If, on the other hand, the surface is covered by an inextensible film, at which 
u = 0, there is a Stokes boundary layer just below the film (where u, is the tangential 
component of V$), which contributes 

(3.12) 

to A ;  accordingly, the factor 1 - T t  is replaced by 2- T i  in the numerator of (3.9), 
8 m n ( ~ i  -s2) must be added to the coefficient of 4, 6, in the numerator of (3. lo), and 
K ,  must be added to the right-hand side of (3.11). 

4. Experimental apparatus and procedure 
We measured the natural frequencies and damping rates of the six lowest modes in 

a brimfull, right circular cylinder. The experimental apparatus comprised an acrylic 
circular cylinder, an electromagnetic shaker with feedback, water from two sources, 
and a non-intrusive wave gauge. The cylinder had a radius a = 2.766k0.0005 cm 
and depth d = 3.80 f 0.005 cm measured from the bottom to the brim of the cylinder, 
which was machined to have a sharp edge. We cleaned the cylinder prior to filling by 
soaking in Micro (brand) laboratory cleaner, a non-toxic, biodegradable alternative to 
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chromic acid that cleans plastics as well as glass. After soaking, we rinsed the cylinder 
in distilled water and vacuumed it dry. 

We conducted three sets of experiments using two water sources. In the first two sets 
we used water that was distilled and filtered of particles greater than 2 pm through 
Whatman slow filter paper. The third set used HPLC (high-grade chromotography) 
water from Sigma Chemicals. A simple test for pure water is provided by rising bubbles 
(Scott 1979); if a bubble persists at the surface for as long as 0.5 s the water is 
considered to be contaminated. The distilled water failed this test; bubbles persisted 
about a second. The HPLC water passed this test; bubbles persisted for 0.09 s. (This 
measurement was obtained by creating bubbles with an intrusive pipette and observing 
them with a high-speed digital imaging system (Kodak Ektapro) operating at 500 
frame s-’.) But Kitchener & Cooper (1959) give a bubble-persistence time of ‘roughly 
0.01 s’ for a clean surface, which suggests that even the HPLC surfaces may not have 
been adequately pure. In all of the experiments we over-filled the cylinder and then 
vacuumed the excess with a micro-pipette attached to a vacuum pump. The surface was 
determined to be flat by observation of a horizontal laser beam that was flush with the 
cylinder’s brim. The meniscus of the over-full cylinder diffracted the beam into a 
vertical line on a white sheet behind the cylinder; this line contracted to a point when 
the water was flat. We also observed the reflection of a vertical metal rod in the water 
surface; the reflection appeared undistorted across the contact line when the surface 
was flat. 

In the first set of experiments, referred to as distilled-clean, we excited the wave field, 
turned off the forcing, and measured a time series of the wave decay within the first 
minute after the surface had been cleaned. In the second set of experiments, referred 
to as contaminated, we measured the time series of the decaying wave field five minutes 
after the surface had been cleaned. We chose this time period, rather than a longer 
interval, to limit evaporation, which causes surface curvature. The results sometimes 
changed if we re-did the experiment after the five-minute period; however, the results 
were reproducible if the experiment was conducted within five minutes after the surface 
had been cleaned. In the third set of experiments, referred to as HPLC-clean, we 
measured the time series of the decaying wave field within a minute after cleaning; 
however, the results did not change over a three-hour period. The experimental 
apparatus was enclosed in an acrylic box (that was not temperature-controlled) for the 
HPLC-clean experiments, but was open to the ambient atmosphere in the distilled 
experiments. 

A Bruel & Kjaer minishaker Type 4810 drove the cylinder vertically to excite waves 
at half the forcing frequency. A non-contacting position transducer (Kaman model 
KD-23 10) monitored the shaker motion and provided a signal to a servo-controller to 
ensure proper motion. A Micro-VAX I1 workstation with analog-to-digital, digital-to- 
analog and two independent real-time clocks provided the forcing signals. The forcing 
frequency was accurate to within 

A non-intrusive Wayne-Kerr capacitance probe measured the surface displacement 
by measuring the field between the water surface and the probe. It averaged over the 
surface area of the probe, which had a circular cross-section with diameter of 0.25 in. 
The probe had to be within a few millimeters of the water surface to ensure linearity 
between surface displacement and output voltage ; accordingly, the wave amplitudes 
were kept smaller than 2mm. We filtered the gauge signal through a Krohn-Hite 
Model 3323 low-pass, analog filter, which also provided a 20 db gain, and digitized 
it with the computer at 350 Hz. The time series was complex-demodulated at half the 
forcing frequency to obtain the amplitude and phase of the wave as a function of time. 

Hz. 
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FIGURE 1. (a) Envelope of the time series of the wave slope, (b)  natural log of the amplitude 
normalized by the steady-state amplitude, and ( c )  phase of a (0, 1)  mode on clean (HPLC) water. 

Figure 1 shows the envelope of the raw time series and the complex-demodulated 
amplitudes and phases from a typical experiment. The amplitude is shown on a 
(natural) log scale; thus the slope of the curve gives the dimensional damping rate, y. 
The phase plot provides a measure of the natural frequency. The phase is constant if 
the wave frequency is equal to the frequency of complex-demodulation, while the slope 
of a linear variation in the phase corresponds to the difference between the actual wave 
frequency and the frequency of complex-demodulation. Thus, figure 1 (c) shows a line 
with zero slope initially, which corresponds to the wave with forcing present, and then 
a line with a non-zero slope, which corresponds to an unforced wave. Over this second 
portion of the phase-time curve, the wave is oscillating at its natural frequency. The 
slope of this line corresponds to the difference between the natural frequency and half 
the forcing frequency. Measurements of the natural frequency of the fundamental 
mode using this method were consistent with those obtained by measuring the 
resonance response of that mode to horizontal forcing. The wave excited by horizontal 
forcing attains its largest amplitude when the forcing frequency equals the natural 
frequency, which therefore provides a determination of the natural frequency. We also 
measured the neutral stability curves (to appear in a future paper) of most of the modes 
herein; the minima of these curves correspond to the natural frequencies of the modes 
and were consistent with values measured from the complex-demodulation procedure. 

5. Results 
We now discuss the measurements of natural frequency and damping rate for the 

lowest six modes in a circular cylinder. We compare the measurements with calculations 
that consider the surface to be either free (clean) or inextensible (fully contaminated). 
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Measurements 

(s,m) K ,  w,/27c f"' A 

(1,O) 1.841 4.105 4.65 1.4 
(2,O) 3.054 5.465 6.32 1.8 
(0 , l )  3.832 6.266 6.84 1.2 
(3,O) 4.201 6.642 7.80 2.2 
(4,O) 5.318 7.794 9.26 2.4 
(1, l )  5.331 7.809 8.57 1.5 

Calculations 

, f @ )  = w/2x 
inviscid 
(2.17) 

4.677 
6.353 
6.753 
7.836 
9.289 
8.597 

f (3) 

viscous 
correction 

4.66 
6.32 
6.73 
7.79 
9.24 
8.57 

f (l) A"eas 

fI3) dcaLc 
~~ 

1.13 1.00 1.2 
1.24 1.00 1.4 
0.44 1.02 2.7 
1.29 1.00 1.7 
1.32 1.00 1.8 
0.48 1.00 3.1 

TABLE 1. Measured and predicted natural frequenciesf(in c.P.s.) and non-dimensional damping rates 
A of the (s, m)  mode with s nodal diameters and m nodal circles on HPCL water for which the contact 
line was pinned and the surface was clean. 

5.1. Clean-surface results 
Table 1 shows the predictions and measurements of natural frequencies and damping 
rates for the HPLC-clean experiments. The nth mode with s nodal diameters and m 
nodal circles has a frequency w ,  from (2.12), with T = 72.4 dyn cm-', which 
corresponds to the natural frequency when the contact line is free. When the contact 
line is pinned, the natural frequency w is obtained from (2.17). Viscous damping has 
a small effect on the natural frequencies. If it arises from Stokes-type boundary layers, 
we can incorporate the measured damping rates into the prediction according to 
frA = fpA-(y,,/2n) where ysm is the measured damping rate of the (s,rn) mode. 
The ratios f ( 1 ) / f ( 3 )  between the measured and viscous-corrected, predicted natural 
frequencies agree within experimental accuracy for all modes except the (0,l)  mode. 
(The ratios f ( l ) / f ( ' ) ,  which compare the measured natural frequencies to the inviscid 
calculations are either 0.99 or 1.00 for all modes except the (0,l)  mode.) We do not 
know why the theory underpredicts the frequency of the (0,l)  mode. Previously 
published predictions of natural frequency agree well with our measured results. 
Graham-Eagle (1983) predicted a natural frequencyf,, = 6.874 Hz for the (0,l) mode, 
which is within 0.5% of the measured value. Miles (1991a) predicted a natural 
frequency off,, = 4.637 Hz for the (1,O) mode, which is within 0.3 YO of the measured 
value. 

The (4,O) and (1,l)  modes have approximately equal wavenumbers. When the 
contact line is free, the natural frequencies from (2.12) of these two modes are very 
close with f,, >Ao. However, when the contact line is pinned, both calculation and 
experiment imply f,, < f,,. Hence, for some contact-line condition between these two 
extremes the two modes must have the same natural frequencies. We observed the 
resonance associated with the proximity of these two frequencies for the free contact 
line, for which the difference is 0.2 Yo, but not for the pinned contact line, for which the 
difference is 7.5 YO. In some experiments using the (2,O) mode, a slight unsteadiness was 
apparent in the decaying time series. The unsteadiness appeared as a high-frequency 
modulation, similar to the high-frequency precession instability observed by Henderson 
& Miles (1991) in experiments on the internal resonance between a (0,l)  mode and its 
superharmonic, (0,3) mode. No precession instability or resonance was visible to the 
eye, and the measurements were the same in experiments with time series that did not 
display the unsteadiness as in experiments with time series that did. 

The measured and predicted damping rates do not agree satisfactorily, as shown by 
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the last column of table 1. The predicted values on a clean surface are given by (3.10), 
with the amplitudes of the velocity potentials calculated from (2.1 1 a), (2.12), (2.15), 
and (2.17). We note that the theoretical results do not change within the accuracy of 
table 1 when the assumption of infinite depth used in (3.9) is relaxed. The predicted 
damping rates increase somewhat, particularly for the higher modes, under the 
assumptions that produce (3.11); but the somewhat better agreement with measure- 
ments using (3.11) is due to these assumptions, and we have tabulated the 
calculations from (3.10). The measured values, A ,  are obtained by normalizing the 
measured (dimensional) damping rate, y ,  through (3.6), where 6 is the ratio of actual 
to critical damping; hence, A = 4~y/(2vw)”~, where a = 2.766 cm is the cylinder 
radius, v = 0.01 cm2 s-’ is the kinematic viscosity, and w is calculated from (2.17) and 
tabulated in column 6 of table 1. 

The cause of the large discrepancies between predicted and measured damping is 
unknown. The results did not change when we conducted experiments in which the 
cylinder was pushed out-of-level a small amount. Nor did they change with the 
placement of the wave gauge (so that the fact that the gauge averaged over a small 
portion of the surface area was not a significant factor). Finally, the results did not 
change when we conducted experiments over a three-hour period, during which a small 
amount of fluid evaporated, causing a slight curvature at the endwalls; accordingly, a 
slight curvature was not significant in the experiments. Moreover, the reproducibility 
over this long period indicates that the hood enclosing the experiments was adequate 
in preventing contamination of the surface from the atmosphere. We also infer from 
this reproducibility that there were no contaminants from the water’s interior that 
could rise to the surface and cause a variation in results between those obtained 
immediately, and those obtained sometime after cleaning the surface. Hence, we feel 
that the surface contamination was minimal. However, we note that the discrepancy 
between theory and experiment increased with increasing wavenumber. This result is 
consistent with the supposition that surface contamination caused the discrepancies, 
since surface contamination presumably becomes more effective in damping waves as 
the wavelength decreases toward the capillary length. It is possible that the surface 
contamination implied by bubbles popping in 0.09 s rather than ‘roughly 0.01 s’ could 
have caused the large discrepancies between predictions and measurements; however, 
for the reasons discussed below, we regard this as unlikely. 

Henderson et al. (1992) measured damping rates for the (0, 1) mode with a free 
contact line that were 1.2 times larger than predictions from the free-end, clean-surface 
theory when the static contact angle was 2 90” and 1.5 times larger than predictions 
from the free-end, clean-surface theory when the static contact angle was < 90”. They 
used a cylinder with the same radius as in the present (above) experiments and water 
of depth 2.00 cm that was doubly distilled and filtered of particles up to 11 pm. They 
cleaned the surface in the same manner as described herein and attributed the 
discrepancies between measurements and predictions to contact-line effects. Possible 
losses of energy due to contact-angle hysteresis, waves formed by meniscus oscillations, 
and the curvature due to the meniscus are absent in the present experiments, for which 
the contact line was pinned and the surface was flat. In addition, the experiments of 
Henderson et al. were open to the atmosphere and used an in-situ wave gauge that 
increases damping a small amount; hence, the techniques used herein are more 
satisfactory than theirs, and we would expect better agreement between theory and 
experiment for the pinned-contact-line experiments. 

Case & Parkinson (1957) report measurements of the damping rate of the (1 ,O)  mode 
with a free contact line in a polished brass cylinder that were in agreement with the 
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A m e m  

(.%m) .f A 

(1 ,O)  4.65 1.4 1.2 
(2,O) 6.32 2.2 1.8 
(0 , l )  6.83 1.8 4.1 
(3,O) 7.79 2.7 2.1 
(4,O) 9.24 2.9 2.2 
( 1 ,  1 )  8.57 2.1 4.4 

TABLE 2. Measured natural frequenciesf(in c.P.s.) and non-dimensional damping rates A of the (s, 
m) mode with s nodal diameters and m nodal circles on filtered, distilled water for which the contact 
line was pinned and the surface was cleaned. 

clean-surface, predicted value. We find this agreement surprising in that Case & 
Parkinson used tap water, which is known to increase damping rates significantly over 
the clean-surface value, and an in-situ probe, which increases damping rates a slight 
amount (or more, depending on the degree of care taken). We therefore tried 
duplicating their results with the techniques described above for the HPLC-clean 
experiments and a polished brass cylinder of radius 3.181 cm. Our measured damping 
rates were 1.12 times larger than the predicted values. 

We also measured damping rates and natural frequencies using filtered, distilled 
water as described in 94. Table 2 shows that the natural frequencies were slightly 
smaller than those in the HPLC-clean experiments for three modes, while the damping 
rates were significantly larger for all modes except the fundamental sloshing mode. 
Presumably the HPLC experiments differed from the distilled-clean experiments owing 
to the presence of contaminants from both the interior and the atmosphere in the latter. 
If so, these results show that the natural frequencies are fairly insensitive to such 
perturbations, while the damping rates are extremely sensitive to surface contamination 
that arises either from the atmosphere or the water. As in the HPLC experiments, the 
discrepancy between theory and experiment is largest for the higher modes, for which 
surface contamination is expected to be more significant. Since the improvement 
associated with the replacement of distilled, filtered water with vacuumed surfaces by 
HPLC water was significant, it is possible that further improvement could be gained 
over the HPLC experiments. However, the results in both the HPLC-clean and 
distilled-clean experiments show that the discrepancy between theory and measurement 
is significantly larger for the modes with a nodal circle (the 0 , l  and 1 ,1  modes) than 
for modes without nodal circles. We have no explanation for this effect of modal 
structure. The distilled-clean measurements were obtained within the first minute after 
the surface was clean. After that time the results changed dramatically as described in 
$5.2. 

5.2. Contaminated-surface results 
Table 3 shows measured and predicted natural frequencies and damping rates for 
pinned-edge waves on a contaminated surface. The measured natural frequencies, f ( 4 ) ,  

are less than those of waves on a clean surface. This decrease is due both to the 
enhanced viscous damping and to the decrease in surface tension that result from a 
contaminated surface. To obtain an estimate of the surface tension of the contaminated 
surface, we calculated an imputed, inviscid frequency frA =frk + (y,,/27c) using the 
actual measured frequency fri and the measured damping rate ysm. These imputed 
frequencies agree best with the inviscid calculations, f ( 6 ) ,  from (2.17) for a surface 
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Measurements 

f ( 5 )  

corrected 
for 

(s,m) f ( 4 )  viscosity A 

(1,O) 4.63 4.69 5.8 

(0,l)  6.68 6.77 7.2 
( 2 , O )  6.19 6.29 7.7 

(3,O) 7.62 7.73 8.1 
(4,O) 8.96 9.10 9.4 
(1, 1) 8.37 8.49 8.9 

Calculations 
with T = 66 dyn cm-' 

A 
f (61 A 

(2.17) (3.8) 
~ 

A r a l r  

4.64 3.19 1.8 
6.29 4.70 1.6 
6.70 4.45 1.6 
1.73 6.06 1.3 
9.13 7.34 1.3 
8.49 6.12 1.4 

TABLE 3. Measured and predicted natural frequencies f (in c.P.s.) and non-dimensional damping rates 
A of the (s, rn) mode with s nodal diameters and m nodal circles on filtered, distilled water for which 
the contact line was pinned and the surface was contaminated. f (4)  is the measured natural frequency; 
f ( 5 )  is the measured natural frequency corrected by the measured (dimensional) damping rate y .  d is 
the measured damping rate normalized by the predicted natural frequency f @ ) .  

tension T =  66 dyn cm-'. Using this value of surface tension, we calculated the 
damping rates d (in column 6) from (3.10) and (3.12) with (2.11a), (2.12), (2.15), and 
(2.17). The measured values of d (in column 4) were obtained by normalizing the 
measured damping rates as described in § 5.1 with w = 2~cj"~'. 

The measured damping rates of the waves on a contaminated surface are much 
greater than predicted by the theory that considers the surface to be an inextensible 
film. The discrepancy may be due to elasticity in the surface film, which can enhance 
damping ratios by a factor of two over the rates for an inextensible surface (see Miles 
1967, figure 1). However, discrepancies due to surface films should dominate the higher 
modes for which wavelengths become comparable with the capillary length. Instead, 
table 3 shows that when surface contamination is considered the discrepancy between 
measurements and predictions is largest for the lower modes. The decrease in 
discrepancy between theory and experiment with increasing wavenumber suggests that 
surface contamination, as evidenced by either an inextensible or an elastic film, was not 
the primary cause of the discrepancy, but we do not have an alternative suggestion. We 
also note that the discrepancy between theory and experiment for modes with nodal 
circles was not significantly different from those without nodal circles in the 
contaminated experiments, while it was markedly different in the HPLC- and distilled- 
clean experiments. 

6.  Discussion 
The theory satisfactorily predicts the natural frequencies of standing waves on a 

surface for which the contact line is pinned and the surface is clean. This agreement is 
much more consistent than for standing waves on a surface for which the contact line 
is free. For example, Henderson et nl. (1992) showed that the natural frequency 
depends significantly on the static contact angle. Hence, the pinned-edge system is a 
good one to use if accuracy in predicting the natural frequencies is required for tuning 
possible nonlinear responses. 

The theory is inadequate for the prediction of the measured damping rates of the 
waves on a surface for which the contact line was pinned. There is evidence that the 
discrepancies between theory and the clean-surface experiments were due to surface 
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effects. The discrepancy between theory and measurements increased with increasing 
wavenumber in accordance with the supposition that surface contamination has a 
larger effect on the higher modes. Moreover, as greater care was taken to achieve a 
clean surface, the damping rates decreased. Bubbles burst in 0.09 s at the surface of the 
HPLC water, indicating that some contamination might be present. Nevertheless, there 
is also evidence that surface effects were not the major cause of the discrepancy between 
theory and clean-surface experiments. Measurements using the HPLC water were 
reproducible from within the first minute of cleaning the surface to over a three-hour 
period, indicating that the procedures were adequate in minimizing surface 
contamination. Measurements (see $5.1) of damping rates for the ( 1 , O )  and (0,l)  
modes with a free contact line were better predicted by the free contact-line theory than 
measurements of the pinned-edge (1,O) and (0,l)  modes by the pinned-edge theory. 
Presumably, the discrepancy between theory and experiment for the free-end mode was 
caused by contact-line dynamics, which were not present in the pinned-edge case. The 
water and water surfaces of the previous experiments were prepared the same as, or less 
satisfactorily than in the present experiments; accordingly, we would expect at least as 
good agreement as in the previous experiments. The discrepancy between theory and 
experiments for the modes with nodal circles was significantly larger than for modes 
with no nodal circles in the clean-surface experiments, suggesting some dependence of 
damping rate on modal structure. The discrepancy between (the inextensible surface) 
theory and contaminated-surface experiments decreased with increasing wavenumber, 
suggesting that surface films were not the dominant cause of disagreement when 
surface contamination was present in both the experiments and the theory. 

Despite the large damping rates in comparison with predictions, the pinned-edge 
waves are advantageous if one is interested primarily in studying waves with a minimal 
damping rate. A comparison of the present results with those of Henderson er al. 
(1992) shows that, irregardless of theoretical predictions, the pinned-edge (clean- 
surface) waves damped with rates that were about 0.7 times those of the free-end waves 
for which the static contact angle was 2 90" and 0.5 times those of the free-end 
waves for which the static contact angle was < 90". 
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Appendix. The surface-film problem 
We seek the solution of the linearized Navier-Stokes and continuity equations 

atq = -V(p/p)+vV2q, 

subject to the boundary conditions 

V-q = 0 (0 d r < a,O < 8 < 2x, -d < z < 0), 
(A 1 a, b) 

u = 0 ( r  = a), w = 0 ( z  = -d), < =  0 (r = a,z  = 0), (A2a-c) 

P 
P 

a , < =  W, TV2<-g<=--+2va,w, u+l,(a,u+o,w)=O ( z = O ) ,  (A3a-c) 

and the outer condition 
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where q = (u, w) is the particle velocity, u, u and w are the horizontal, radial and 
vertical components thereof, p is the pressure, 5 is the surface displacement, T is the 
kinematic surface tension, 1, is a complex length, V, is the horizontal component of V, 
and q5 is the inviscid solution of $2. We assume that both the viscous length lL, ( I .  I )  and 
the capillary length 1, (1.3) are small compared with a, by virtue of which the 
interaction of the surface-film and sidewall boundary layers may be neglected. 

Following Miles (1991 b), we pose the solution of (A ])-(A 4) in the form 

4 = V#+V x (VX x ZJ, P = -pat #, (A 5 4  b) 

where V x  x z1 is a vector potential and z1 is a vertical unit vector. Substituting (A 5 )  
into (A l),  we obtain 

The solution of (A 6), subject to (A 2 4  b), is given by (A 4b)  and the corresponding 
expansion 

where, on the assumption of the harmonic time dependence exp(iwr) and the 
invocation of k ,  1, < 1, 

v2$ = 0, a t x  = vv2x. (A 6 a ,  b)  

x = x,(t) R,(r) cos SO e"nZ, (A 7 )  

Substituting 

u = (q5 ,  +p, x,) V[R,(r) cos SO], w = (k ,  r, q5, + k i  x,) R,(r) cos so ( z  = 0) 

into (A 3c) and invoking the orthogonality of the R,(r), we obtain 

Proceeding as in $2, we substitute (A 9b) into (A 3a,  b)  to obtain 

5 = (iw)-' (k ,  q5, + k:L x,) R,(r) cos $0 

and 

Those may be solved as in $2 to obtain 

TV2c-gc = [iwq5, + 2vk;(q5, +pn, x,)] R,(r) COSSO. 

in place of (2.17), where C, is given by (2.15), and 

1- [ k ,  ll,(T;l + 4 k ,  I,) 4; = w; 1 - 
1 + i + 2i(1,/lI,) 

The limit for an inextensible film yields the Stokes-boundary-layer result 

4; - w;[l-;(l -i)k, T;lZ,,I (lS/I,,+O). 

The limit of a free surface yields 

6; - w i (  1 - 2ik; 13) (Iky/ll, + co), 

in which the viscous term is negligible compared with that for a Stokes boundary layer. 
The parameter ls/ll, is positive-imaginary for gravity waves and an insoluble surface 
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film (Miles 1967, 1991 b), and the contribution of surface-film damping to the damping 
ratio S then varies from the asymptotic value (kn/Tn)l , ,  for ll~.J/l,,+O through a 
maximum of twice the asymptotic value for 11,1/1,, = f to k2,l: for lls/l,,/ --f co. 
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